UNIT-4

Systems with Two Degrees of Freedom

Introduction to two degree of freedom systems:

+ The vibrating systems, which require two coordinates to describe its motion, are called two-
degrees-of -freedom systems.

e These coordinates are called generalized coordinates when they are independent of each
other and equal in number to the degrees of freedom of the system.

« Unlike single degree of freedom system, where only one co-ordinate and hence one
equation of motion is required to express the vibration of the system, in two-dof systems
minimum two co-ordinates and hence two equations of motion are required to represent the
motion of the system. For a conservative natural system, these equations can be written by
using mass and stiffness matrices.

« One may find a number of generalized co-ordinate systems to represent the motion of the
same system. While using these co-ordinates the mass and stiffness matrices may be
coupled or uncoupled. When the mass matrix is coupled, the system is said to be
dynamically coupled and when the stiffness matrix is coupled, the system is known to be
statically coupled.

« The set of co-ordinates for which both the mass and stiffness matrix are uncoupled, are
known as principal co-ordinates. In this case both the system equations are independent and
individually they can be solved as that of a single-dof system.

e Atwo-dof system differs from the single dof system in that it has two natural frequencies, and
for each of the natural frequencies there corresponds a natural state of vibration with a
displacement configuration known as the normal mode. Mathematical terms associated with
these quantities are eigenvalues and eigenvectors

« Normal mode vibrations are free vibrations that depend only on the mass and stiffness of the
system and how they are distributed. A normal mode oscillation is defined as one in which
each mass of the system undergoes harmonic motion of same frequency and passes the
equilibrium position simultaneously.

e The study of two-dof- systems is important because one may extend the same concepts
used in these cases to more than 2-dof- systems. Also in these cases one can easily obtain
an analytical or closed-form solutions. But for more degrees of freedom systems numerical
analysis using computer is required to find natural frequencies (eigenvalues) and mode
shapes (eigenvectors).

The above points will be elaborated with the help of examples in this lecture.
Few examples of two-degree-of-freedom systems ::

Figure shows two masses m; and m. with three springs having spring stiffness k;, k> and k; free to
move on the horizontal surface. Let x; and X, be the displacement of mass respectively.



As described in the previous lectures one may easily derive the equation of motion by using
d'Alembert principle or the energy principle (Lagrange principle or Hamilton 's principle)
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Figure 6.1.1(b): Free body diagrams

Using d'Alembert principle for mass m; from the free body diagram shown in figure.

mx gty —hx =0

and similarly for mass m:

gy, —hx + g tig)x, =0

Important points to remember

Inertia force acts opposite to the direction of acceleration, so in both the free body diagrams
inertia forces are shown towards left.

For spring m»assuming x;> x>, The spring will pull mass m» towards right by k> (x2- x1) and it
is stretched by x»- x; (towards right) it will exert a force of k> (x>- x;) towards left on
mass m;. Similarly assuming

x1> x2 the spring get compressed by an amount x;- x; and exert tensile force of k; (x2- x1). One
may note that in both cases, free body diagram remain unchanged.

Now if one uses Lagrange principle,
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The equation of motion for this free vibration case can be found from the Lagrange principle
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and noting that the generalized co-ordinate M and

which yields
X+ (kg +k)x —kx, =0

MKy — kg x + (ky +ig)xy =0

Same as obtained before using d'Alembert principle.

Now writing the equation of motion in matrix form
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Here it may be noted that for the present two degree-of-freedom system, the system is dynamically
uncoupled but statically coupled.

Free Vibration using normal modes: When the system is disturbed from its initial position, the
resulting free-vibration of the system will be a combination of the different normal modes. The

participation of different modes will depend on the initial conditions of displacements and velocities.
So for a system the free vibration can be given by

x=gAsn(@s+yq) + @B sin(ayt +ys)

Here A and B are part of participation of first and second modes respectively in the resulting free

vibration and ¥4 and %2 are the phase difference. They depend on the initial conditions. This is
explained with the help of the following example.

Forced harmonic Vibration:

Consider a system excited by a harmonic force fane expressed by the matrix equation
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e Two vectors x; and x2 are normal if x{ % =1 and

e Two vectors x| and x2 are orthogonal if"'r{'xg =0 .



e |Ifx;and xo normal and orthogonal, they are called orthonormal, in that case
xx, =0, i=12, j=12
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tuned Vibration Absorber

O, . .
where ¥ is the Kronecker delta, defined

Consider a vibrating system of mass "1, stiffness kl. subjected to a force Fsin@t Ag studied in case of
forced vibration of single-degree of freedom system, the system will have a steady state response given
by

x—M, where @, =,"Jc1a’m,
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Which will be maximum when “ =~ “=-Now to absorb this vibration, one may add a secondary spring and
mass system as shown in figure.
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The equation of motion for this system can be given by
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As we know for steady state vibration, the system will vibrate with a frequency of the external excitation;
we can assume the solution to be

(2)
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Substituting Equation (3) in equation (2) one may write
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Here 4 and j".alr-‘a the roots of the characteristic equalionl ( }| . One may note that these roots
are the normal mode frequency for this two-degrees of freedom system. These free-vibration
frequencies can be given by
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From equation (6), it is clear that, 7

Hence, if a system called the primary system with a stiffness & mass ! is subjected to an

exciting force or base motion to vibrate, it is possible to completely eliminate the vibration of
the primary system by suitably designing an attached spring-mass system (secondary

system) with stiffness % and mass " such that the natural frequency of the secondary
system coincide with the exciting frequency.

l‘ ;\;:«_;_:: . (1 2)
This is the principle of dynamic vibration absorber

From equation (1) it may be noted that the primary system will have resonance when the natural
frequency of the primary system coincide with that of the excitation frequency.

Hence to reduce the vibration at resonance of the primary system one should design the secondary
system such that the natural frequency of both the components coincides.

For this condition




Substituting H=m and "~ @l a, , the above equation reduces to
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To keep the displacement of secondary mass small, the stiffness of the secondary spring should be
very large. To have this the secondary mass should also be large which is not desirable from
practical point of view.

Hence a compromise is usually made between the amplitude and the mass ratio. The mass ratio is
usually kept between 0.05 and 0.25.

Resonant frequency of the vibration absorber
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Centrifugal Pendulum Vibration Absorber

The centrifugal pendulum vibration absorber was devised and patented in France about 1935 and at
the same time it was independently conceived and put into practice by E. S. Taylor. Its purpose was
to overcome serious torsional vibration problem inherent in geared radial aircraft-engine —propeller
system. Later it was modified and incorporated into automobile IC engines in order to reduce the
torsional vibrations of the crankshaft. This was done by integrating the absorber mass with
crankshaft counter balance mass.The tuned vibration absorber is only effective when the frequency
of external excitation equals to the natural frequency of the secondary spring and mass system. But
in many cases, for example in case of an automobile engine, the exciting torques are proportional to
the rotational speed ‘n' which may vary over a wide range. For the absorber to be effective, its
natural frequency must also be proportional to the speed. The characteristics of the centrifugal
pendulum are ideally suited for this purpose.

Placing the coordinates through point O', parallel and normal to r, the line r rotates with angular
velocity ( €%,
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The acceleration of mass
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If we assume the motion of the wheel to be a steady rotation * plus a small sinusoidal oscillation
of frequency @, one may write
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Substituting the above equations in equation yields,
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Hence the natural frequency of the pendulum is

And its steady-state solution is
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It may be noted that the same pendulum in a gravity field would have a natural trequency of J: . So
it may be noted that for the centrifugal pendulum the gravity field is replaced by the centrifugal field
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