UNIT-3
Harmonically excited Vibration

Steady State Response due to Harmonic Oscillation:

Consider a spring-mass-damper system. The equation of motion of this system subjected to a

harmonic force ¥ S &L can be given by

mx+ix+cx=Fsin ot

Where, m, k and c are the mass, spring stiffness and damping coefficient of the system, Fis the
amplitude of the force, w is the excitation frequency or driving frequency.
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Alternative methods may be used to find the solution of equation

Rotating and Reciprocating unbalance
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The figure shows a rotating equipment rotating at a speed of w rad./sec. Let m,be the unbalance mass
rotating with its CG at a distance of e from Centre. This unbalanced mass gives rise to a centrifugal force,
equal to mow? e .Let m be the total mass of equipment inclusive of myand at any instant of time momake



an angle of wt. The equation of motion for this system can be written considering the effective mass ‘m-
me and the unbalanced mass ‘m,’. Referring figure as shown below, we have the effective displacement
of m, is sum of X’ and ‘esinwt’. Hence we can write the equation of motion in the vertical direction as

(m-mg)x” + (mo)d*(x + esinwt) /dt*> =- Kx—Cx’

[ﬂl“ -max™ [ modT FdtE [x + ecm )
l K= Jtn’

i.e. mx” - mex” +mox”+ mod{wecoswt}/dt =-Kx —Cx’
mx” - m, w’e sinwt = -Kx =Cx’
mx” + Cx’ + Kx = mow?sinwt
The above equation is similar to
mx” + Cx’ + Kx = Fsinwt
Hence for an under damped system, we get the expression for steady state amplitude as
X=  mew’e/K

Ja=(ww )2 +Qhw/w,)?

Therefore X = (w/wn)?

(mee/m) A= (Ww _)?)? +Qhw/w,)?
O =tan* {2§(w/wn) / (1 - (w/wn)?)
Same analysis is extended to reciprocating masses where exciting force becomes
meew’sinwt where m, = Unbalanced mass of reciprocating masses.
The complete solution for the unbalanced system is
x = Ae " (sinwgt + @, ) + (moew? /k)/(V(1-(w 2/wn? )* + (2§w/ wn)? )

The following points are concluded for unbalanced system:



Damping factor plays an important role in controlling the amplitudes during resonance.
For low values of frequency ratio, X tends to 0.

For low values of frequency ratio (w/w,), X tends to 0.

At high speeds of operation, damping effects are negligible.

The peak amplitudes occur to right of resonance unlike for balanced systems.

At resonance, w=w, ie: X/ mee/m=1/2¢

Also, (X )rescmance = moe/ Zmﬁ

From the plot of (X / em,m) v/s w/w,, it iserved that at low speeds, because the inertia force is small,
all the curves start from zero and at resonance (X / moe/m )= 1/2¢ and the amplitude of such vibrations
can be controlled by the damping provided in the system. For very large frequency ratio, (X / m.e/m )
tends to one.

Newton's 2 nd law of the motion

A particle acted upon by a force moves so that the force vector is equal to the time rate of change
of the linear momentum vector.

Let a particle of mass ¥ moves along a curve C under the action of a given force F as shown in
Figure 1. By definition the increment of work perform in moving the particle from position #

to ¥+ is given by

dw =F.dr

The principle of virtual work is a statement of static equilibrium of mechanical systems which
represents the first vibrational principle of mechanics and is a transition from Newtonian to
Lagrangian mechanics.

Virtual displacement

Consider a system of N particles in which the position of i'" particle in space is represented
byr(i=1,2...N). Then the virtual displacement represents the imagined infinitesimal

changes o5 in these position vectors that are consistent with the constraints of the system, but
are otherwise arbitrary.



- Figure | System of particles

According to the generalized d'Alembert principle the virtual work performed by the effective
forces through infinitesimal virtual displacements compatible with the system constraints is zero.

S (Fi-mi) 87 =0
i=1 (1)
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Consider the case where the displacements fi (t) are independent, so that or, are entirely
arbitrary. The virtual work done by the applied force can be given by -

S-S F-sf
=l

(2)
Forced Vibrations without Damping
The equation of motion of an undamped forced oscillator is:

mu” +ku = F;,cos(ax)

When o # @,(non-resonant case), the solution is of the form:

u(t)=c,cos(@yt)+c,sin(ayf)+

When @ = @, (resonant case), the solution is of the form:



u(t)=c, cos(amyt)+c, sin(%r)+£rsin(a}ot)

2mo

Forced Vibrations with Damping

In this section, we will restrict our discussion to the case where the forcing function is a sinusoid.
Thus, we can make some general statements about the solution:

The equation of motion with damping will be given by:

mu" + yu'+ku = F, cos(et)

Its solution will be of the form:

Notes:

u(t)= it (1)+cu, (r) +\Acos(a)r)+Bsin(a)f)’

W v
homogeneous solution u, (1) particular solution u (1)
"transient solution” “steady state solution™

The homogeneous solutionu, (1) — 0 as  —oc, which is why it is called the “transient

solution.”
The constants c1 and c2 of the transient solution are used to satisfy given initial
conditions.

The particular solution u, (r) is all that remains after the transient solution dies away,

and is a steady oscillation at the same frequency of the driving function. That is why it is
called the “steady state solution,” or t ‘orced response.”
The coefficients A and B must be determined by substitution into the differential

equation.

If we replace u,(t)=U(r)=Acos(er)+Bsin(at)with u,(t)=U(t)=Rcos(wr—75),

m(%z_w:)
A

Fy

then R=—
A

/ Cos(é'): . sin(ﬁ)z%, A= mz(%z—mg)z-i-yzaf, and

k
@,  =— . (See scanned notes at end for derivation)
m

Note that as @—>0, cos(8)—>1and sin(5)—>0=[5 > 0].



e Note that when o= a,, 5:%

e Note thatas @w—>o, (mass is out of phase with drive).

e The amplitude of the steady state solution can be written as a function of all the

parameters of the system:
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e Notice that R[i

0

}is dimensionless (but proportional to the amplitude of the motion),

F,
since T is the distance a force of Fo would stretch a spring with spring constant k.
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e Notice that I' = “—is dimensionless...
mass

?
mass ——
time”




Note thatas @ — 0, R[i]—al:»R_)%.
0

Note that as w—o0, R—0 (i.e., the drive is so fast that the system cannot respond to it
and so it remains stationary).
The frequency that generates the largest amplitude response is:
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Plugging this value of the frequency into the amplitude formula gives us:

R—
}’2
Wy 11—
TN Gk
If :Fk > 1, then the maximum value of R occurs for @=0.
m

Resonance is the name for the phenomenon when the amplitude grows very large
because the damping is relatively small and the drive frequency is close to the undriven
frequency of oscillation of the system.



Vibration Isolation: High speed machines and engines due to unbalance give rise to vibrations of
excessive amplitudes and due to the unbalance forces being setup, the foundations can be damaged.
Hence there is a need to eliminate or reduce the vibrations being transmitted to the foundations,
springs, dampers, etc. are placed between the machines and the foundations to reduce the vibrations or
minimize then. These elements isolate the vibrations by absorbing the vibration energy. This isolation of
vibrations is expressed in terms of force or motion transmitted to the foundation. The requirements of
these isolating elements are that there should be no connection between the vibrating system & the
foundation & it is to be ensured that in case of failure of isolators the system is still in of position on the
foundation. Rubber acts effectively as an isolator during shear loading. The sound transmitted by it is
also low. Heat and oil affect the rubber and it is usually preferred for light loads & high frequency
oscillation. Felt pals are used for low frequency ratios. Many small sized felt pads are used instead of a
single large pad. Cork can be used forcompressive loads. Helical & leaf springs of metal are used as
isolators for high frequency ratios. They are not affected by air, water or oil. The sound transmitted by
them can be reduced by covering them with pads of felt, rubber or cork.

TRANSMISSIBILITY:

Fsinwt

"4 i / 7

In a spring mass dashpot system subjected to harmonically varying external force, the spring and
dashpot become the vibration isolators and the spring force and damping force are the forces between



the mass and foundation. Thus the force transmitted to the foundation (Fi) is vector sum of the spring
force (kX) and damping force (cwX). We can write,

Fi= X V(K? + c?w?), substituting for X as X = F/((k— mw?) 2+ (cw)?), we have Fi, equal to,
F = F (VK2 + Cw?) / (k- mw?) 2+ (cw)?)

Transmissibility is defined as the ratio of force transmitted to the foundation to the force impressed on
the system i.e.,

T=€=Fu/ F=V(1+ (cw/k)?/ (V(1-(w 2/wn? )2 + (26w/ wn)? )
The angle of lag of the transmitted force is,

(p—a)=tan " ((2§w/ wn) / 1-(w */wn?)) -tan ~ 28w/ ws)

Plot of Tyversus w/ wy(refer a text book) for various values of §, is called the transmissibility curve. From
the plot it is seen that all curves start from 1 and transmissibility T.is always desired to be less than 1, as
it ensures that transmitted force to the foundation is minimum and better isolation is achieved. The
operating values of frequency ratio to achieve this effect should be greater than v2 and the region
beyond this value of frequency ratio is called mass control zone where isolation is most effective. In the
plot the frequency ratio values up to 0.6 are spring control zone and from 0.6 to V2 is damping control
zone and beyond that is mass control zone.

Whirling of shaft:

Whirling is defined as the rotation of the plane made by the bent shaft and the line of the centre of
the bearing. It occurs due to a number of factors, some of which may include (i) eccentricity, (ii)
unbalanced mass, (iii) gyroscopic forces, (iv) fluid friction in bearing, viscous damping.

Consider a shaft AB on which a disc is mounted at S . G is the mass center of the disc, which is at a
distance e fromS. As the mass center of the disc is not on the shaft center, when the shaft rotates, it
will be subjected to a centrifugal force. This force will try to bend the shaft. Now the neutral axis of
the shaft, which is represented by line ASB, is different from the line joining the bearing centers



AOB. The rotation of the plane containing the line joining bearing centers and the bend shaft (in this
case it is AOBSA) is called the whirling of the shaft.

Considering unit vectorsi . j . k as shown in the figure 4.6(b), the acceleration of point G can be
ag =agtagy

given by
= [i*’ -ré —e@’ cos{@t - 9)]37 + [rﬁ' —e@” sin (@t - &)+ 2f5']f

Assuming a viscous damping acting at S. The equation of motion in radial direction

m[i"'“ré;" - e’ cos[m{—ﬂ)] +lkr+Cr=10

m[r6+276 -ed sin (@t~ 8)] +eré =0

F+ii+[£-€?] =0’ cos{@t — &)
m

e

ré+ [ir + 2.?']6;' =e@” sin (@ - )

]

Considering the synchronous whirl case, i.e. g=a
g=(at-¢)
where ? is the phase angle between ¢ and r .

Taking G=F=r=0 , from equation.

[E-af] = e@’ cos g
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tan ¢ =

Hence,
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From equation, " ”

Substituting equation yields
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The eccentricity line e = SG leads the displacement line r = OS by phase angle # which depends on
@

the amount of damping and the rotation speed ratio @ When the rotational speed equals to the
natural frequency or critical speed, the amplitude is restrained by damping only. From equation at

very high speed @2’ d’”, $—180° and the center of mass G tends to approach the fixed
point O and the shaft center S rotates about it in a circle of radius.



